Inhibition of copper-zinc superoxide dismutase induces cell growth, hypertrophic phenotype, and apoptosis in neonatal rat cardiac myocytes in vitro.

نویسندگان

  • D A Siwik
  • J D Tzortzis
  • D R Pimental
  • D L Chang
  • P J Pagano
  • K Singh
  • D B Sawyer
  • W S Colucci
چکیده

Oxidative stress has been implicated in the pathophysiology of myocardial failure. We tested the hypothesis that inhibition of endogenous antioxidant enzymes can regulate the phenotype of cardiac myocytes. Neonatal rat ventricular myocytes in vitro were exposed to diethyldithiocarbamic acid (DDC), an inhibitor of cytosolic (Cu, Zn) and extracellular superoxide dismutase (SOD). DDC inhibited SOD activity and increased intracellular superoxide in a concentration-dependent manner. A low concentration (1 micromol/L) of DDC stimulated myocyte growth, as demonstrated by increases in protein synthesis, cellular protein, prepro-atrial natriuretic peptide, and c-fos mRNAs and decreased sarcoplasmic reticulum Ca(2+)ATPase mRNA. These actions were all inhibited by the superoxide scavenger Tiron (4,5-dihydroxy-1,3-benzene disulfonic acid). Higher concentrations of DDC (100 micromol/L) stimulated myocyte apoptosis, as evidenced by DNA laddering, characteristic nuclear morphology, in situ terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL), and increased bax mRNA expression. DDC-stimulated apoptosis was inhibited by the SOD/catalase mimetic EUK-8. The growth and apoptotic effects of DDC were mimicked by superoxide generation with xanthine plus xanthine oxidase. Thus, increased intracellular superoxide resulting from inhibition of SOD causes activation of a growth program and apoptosis in cardiac myocytes. These findings support a role for oxidative stress in the pathogenesis of myocardial remodeling and failure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phenotype, and Apoptosis in Neonatal Rat Cardiac Myocytes In Vitro Inhibition of Copper-Zinc Superoxide Dismutase Induces Cell Growth, Hypertrophic

Oxidative stress has been implicated in the pathophysiology of myocardial failure. We tested the hypothesis that inhibition of endogenous antioxidant enzymes can regulate the phenotype of cardiac myocytes. Neonatal rat ventricular myocytes in vitro were exposed to diethyldithiocarbamic acid (DDC), an inhibitor of cytosolic (Cu, Zn) and extracellular superoxide dismutase (SOD). DDC inhibited SOD...

متن کامل

Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes.

Oxidative stress stimulates both growth and apoptosis in cardiac myocytes in vitro. We investigated whether oxidative stress mediates hypertrophy and apoptosis in cyclically stretched ventricular myocytes. Neonatal rat ventricular myocytes cultured on laminin-coated silastic membranes were stretched cyclically (1 Hz) at low (nominal 5%) and high (nominal 25%) amplitudes for 24 hours. Stretch ca...

متن کامل

Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio.

There have been very few investigations as to whether mitochondrial-mediated apoptosis in vivo is the underlying mechanism of doxorubicin cardiotoxicity. Moreover, no investigations have been conducted to determine whether there are adaptive responses after doxorubicin treatment. We administered a single dose of doxorubicin (20 mg/kg) to male rats and isolated intact mitochondria from their hea...

متن کامل

Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice

Sustained pressure overload causes cardiac hypertrophy and the transition to heart failure. We show here that dietary supplementation with physiologically relevant levels of copper (Cu) reverses preestablished hypertrophic cardiomyopathy caused by pressure overload induced by ascending aortic constriction in a mouse model. The reversal occurs in the continued presence of pressure overload. Sust...

متن کامل

Expression of human copper/zinc-superoxide dismutase inhibits the death of rat sympathetic neurons caused by withdrawal of nerve growth factor.

Rat superior cervical ganglion neurons require the presence of nerve growth factor (NGF) to develop and survive in culture. If NGF is removed from the culture medium, then the neurons die of programmed cell death. We investigated the potential role of Ca2+ and reactive oxygen species in this process. We found that overexpression of human wild-type copper/zinc-superoxide dismutase in cultured su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 85 2  شماره 

صفحات  -

تاریخ انتشار 1999